Última entrada

Pensar es divertido. Juegos de negación

  En esta publicación continuamos transcribiendo  parte de los juegos avanzados que  figuran en el libro  de Siegfried Kothe, (1991),   Cómo utilizar los Bloques LÓGICOS de Z. P. Dienes.  Barcelona: TEIDE. Te recomendamos leer previamente:  Pensar es divertido. Juegos de orden 2 JUEGOS DE NEGACIÓN Juego 29 ¿Qué característica falta? Tomamos un bloque y ya no preguntamos sólo cómo es el bloque (juego 14), sino también cómo no es. Este juego es una variante del juego 17 en el que las cruces indican los atributos que corresponden al bloque y los cuadros en blanco nos indican lo que no es. El bloque de la primera fila de la figura 15 es «rojo y cuadrado y delgado y grande». También es «no azul y no amarillo y no redondo y no rectangular y no triangular y no grueso y no pequeño». Cuatro propiedades corresponden al bloque, y siete no le corresponden Debemos introducir un símbolo que indique «no». Emplearemos la letra N colocada delante del símbolo del ...

Día Internacional de las Matemáticas

Hoy, en el Día Internacional de las Matemáticas, recomendamos a nuestros estimados lectores El diablo de los números de Hans Magnus Enzensberger (*) .

A Robert no le gustan las Matemáticas, como sucede a muchas personas, porque no las acaba de entender. Pero una noche él sueña con un diablillo que pretende iniciarle en la ciencia de los números. Naturalmente, Robert piensa que es otra de sus frecuentes pesadillas, pero en realidad es el comienzo de un recorrido nuevo y apasionante a través del mundo de las Matemáticas. ¿No es extraño hallar siempre secuencias numéricas por la simple multiplicación de los unos: 1 x 1 = 1, 11 x 11 = 121, 111111 x 111111 = 12345654321, y así en adelante? Y esto es sólo la operación más sencilla. Durante doce noches, Robert sueña sistemas numéricos cada vez más increíbles. De pronto, los números cobran vida por sí mismos, una vida misteriosa que ni siquiera el diablo puede explicar del todo. Nunca las Matemáticas habían sido algo tan fascinante. Pronto, el diablo le hará abandonar los tópicos escolares y hará que acceda a niveles superiores: ¡y aun así los entiende! Y el joven lector también. Los números, cada página que pasa, se van volviendo cada vez más absorbentes. Es como magia, y Robert quiere saber más y más hasta que, al fin, el diablo le hace comprender que algunos problemas y paradojas pertenecen a las altas esferas de la ciencia.

Las tres edades

 de 8 a 88 años


(*)Hans Magnus Enzensberger (Baviera, 1929-Múnich, 2022) Escritor, ensayista, poeta y una de las figuras más importantes del pensamiento alemán contemporáneo.

Te recomendamos leer: 

Comentarios